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We present a survey of stochastic models of competitive behaviour between
two players in a dynamic setting. After presenting the formal model of stochas-
tic games, we consider discounted reward, average reward, total reward, and
structured stochastic games. We conclude with some approximation algorithms
for computing the value of discounted- and average reward stochastic Games.

]. INTRODUCTION
In this paper we present a survey on zero-sum Stochastic Games. Th am
are stochastic models of competitive behaviour between two players in a
dynamic setting. They include as special cases static noncooperative games,
rcpcated games with complete information and Markovian Decision Problems.
[hese games are played at a series of discrete time points, called stages or
decision moments. At each stage a zero-sum game has to be played, which is
one out of a well-defined finite set of zero-sum games. Let S be thus set of
games. If at a certain stage a ccrtam game, say game s €S, has to be played
then we say that our System 1S 1N state s. The dynamics of Stochastic Games
are of the Markovian type i1n th that the state of the system at a certain
decision moment only depends (in a stochastic way) on the state at the preced-
ing decision moment and on the actions chosen by the players at that preced-
ing decision moment.
If m the above setting one player were a dumn
mM1Za u on problems,

ly 1n each game se€S, hence
then the above model reduces
[hus Stochastic Games can be
regarded as a fusion of two other types of deczlswn problems, namely matrix
games and Markovian Decision Problems. Th um games to be played
at each stage are matrix games. The dynamics of the Stochastic Game are
embedded in a discrete time Markov Process.

The theory of Stochastic Games started with the fundamental paper of
Shapley [26]. Strikingly the theory of Stochastic Games and the theory of Mar-
kovian Decision Problems, so close related, evolved for many years along
separate lines. The techniques commonly used in the early approaches to Sto-
chastic Games stem from the theory of functions and from fixed point

theorems. Only in the late 1970’s was the interrelationship between these two
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th ey add up m zero. Obviously, such a decrsron problem e
matrix M of numbers m;;, where m;; equals by convention the peyo ff to
player E if player 1 chooses his i-th action and player 2 his j-th action. By the
rules of the game, the payoff to player 2 in this case equals — m;; Obvrously
al of player 1 1s to maximize the outcome of th yme (b Y choosm g 1n
an appropriate way some row of M, whil ] 111
come (by choosing in an appropriate way some column Now a Stochas-
tic Game is nothing else but repeatedly playing matrix games, at well-defined
discrete decision moments, according to the following rules. There 1s fixed a
finmite number, say z, of matrix games. At each decision moment the players are
informed about the matrix game at hand at that moment. Next, both players
make a choice (simultaneously and independently) out of the action sets avail-
able 1n this matrix game. These choices result not only in a payoff (as in a
matrix game), but also in an action dependent probability measure on the set
of matrix games. Next, according to this probability measure, a chance experi-
ment 1S carried out to determine the matrix game to be played at the following
decision moment. So, in Stochastic Games, at each decision moment, the
players have short term as well as long term interests: short term in the sense
that the chosen action determines some immediate payoff at that moment;
long term in the sense that the actions determine the dynamic behaviour of the
system at that moment, giving rise to intentions of the players of steering the
system to more favourable matrix games.

As already stated, Stochastic Games can be regarded as extensions of Mar-
kov decision problems (cf. Denardo [8]). A, say maximizing, Markov decision
problem 1s defined analogously to Stochastic Games, with the restriction that
each of the z matrix games consists of a single column. This reflects the fact
that in Markov decision problems, we have to do with only one decision maker
who has to choose a row out of that single column. The immediate rewards
and the dynamics of the system are defined completely similarly to Stochastic
Games. Obviously, a minimizing Markov decision problem can be represented
as a Stochastic Game, where each of the matrix games consists of a single row.
Thus a zero-sum Stochastic Game can be viewed as the extension of the
multi-stage decision problem with one decision maker to the case of the multi-
stage decision problem with two decision makers having strictly opposed
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resul ts are d from Vrieze and Tijs [3 9]
at average reward ¥3 _
| the 1dea of using the notion of Pu seux series 1in
[he emphasis will lie on characterizations of games for
_ timal statmnaw Str ategles the results 1n
this schon come from Vrieze [37] and Thuijsma
In Section 5 total reward Stochastic Games are considered. In a certain
this criterion appears to have properties simil iter:
the other two cn tena are exp osed in thi

this ICSP@Ct stem from Thuijsm

In Section 6 we handle a num

In Section 4 we look

. Most of the results 1n

ructured Stochastic Games,
cing restrictions on the reward and
FHxam pl es are Stochas tic Games where th mam cs of the
[22] and Vneze [37}) or mes where th
sum of a term only dependin the state and of a term only dep ending on
the actions (cf. Sobel [29] an rth thy et al. [23]).
Finally 1n Section 7 we give some approximation algon thms for computing
the value and e-optimal stationary strategies for th unted reward as well
as for the average reward Stochastic Gam
extensions of algorithms for Markovian Decmwn Problems to Stochasuc

Games. (cf. Van der W [34], Federgruen [9], Hordijk and Kallenberg [16]).

2. THE STOCHASTIC GAME MODEL
In this section we state the formal definition of a Stochastic Ga
it 1s played.

A Stochastic Game consists of a sequence of matrix games M, ,M,,....M,,...
to be played consecutively, where M,eS, t = 1,2,..., with § a finite set of

me and the way
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R L
In state s.

[ he (z . j )-th entry of matrix games s 1s @ ed b
player 1 to be paid by - 2 ﬂ’
nd player 2 chooses action ]-
Edssl the Stochastic Game are represented by transition proba-

s Xz); X =0, Zz_mlxs 1} be the set of proba-

1 neasures on the set of m &U'D( g aA1n Ih air of actions (l , J)

of the players m a state s tl d
player 2 choos es j th
matrix game €S has to be played

tlonp(tls I,_])

nea nin g: if m state s play - E chooses 1 md
the probability that at the next decision moment
equals the 7-th component of p.(i,j), nota-

the number of decision moments two types of Stochastic
ames can be distinguished: finmite horizon and infinite horizon. In this paper

will concentrate on the latter one, where the set of decision moments is
supposed to be the set N of natural numbers. At the end of this section it will
be made clear that Stochastic Games with a finite number of decision moments
can be 1dentified with matrix games.

A Stochastic Game is played as follows. A starting state s; €S is given to
both players at decision moment 1. Both players simultaneously and indepen-
dently choose an action out of their respective available action sets. Say, this
results 1n action i €4, for player 1 and action j, €B; for player 2. Then two

things happen. First there is an immediate payoff rs (i1,71) to player 1 from

player 2 and second, the system moves to a next state according to the proba-
bility measure p; (i,j;) where p(t|s,,i,,j1), for each t €S equals the probabil-
ity that this next state will be state ¢. Then at decision moment 2 both players
are informed about the new current state. Here the game proceeds as if it
starts again, etc. We assume perfect recall and complete information, i.e. at
each decision moment both players perfectly remember all past states and
actions that have actually occurred and both players know each function 7
and all mappings p;, completely.

As usually 1n non-cooperative game theory we allow the players to select at
each decision moment a (pure) action according to the specification of a mixed
action. Since, at each decision moment, the players have full knowledge of the
history of the game up to that moment, they may use this knowledge in speci-
fying their mixed action. Furthermore, this mixed action may depend on the
stage number. Formally, let 4, be the history of the game at decision moment

n, 1€ Ny 1= (51,§1,J1,52:02,J25-58n —1,8n —1,Jn —1), Where at decision moment &,
Sk €S, ir€A, and j,€B; have occurred for k = 1,2,...,n — 1. Let P(4,)(P(B,))
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actions for player 1 (player 2) in state s €S, i.e.

{(xl,xz,...,

I
<
N
&
o3
>

\

-

player 1, notation |, can b
' EBS (S n, h ) with m (.S’ n hn) cP

VIDES of strategies are discerned.
FHSE a pure strategy 1s a strategy where i (s,n,A ) spcmﬁes with probabil-
ity one some pure action for each s .S, hi decision moment 7.
Markov strategy i1s a strategy where at each decision moment
he mixed action only depends on the smge num and on the current
state and not on the hi ame. Il Markov strate gY for
player k is a function 7, on the set of pairs (s n), with the same interpre-
tation as above for behaviour strategy.

lhird, a stationary strategy is a strategy where at each decision moment
the mixed action only depends on the current state and not on the stage
number or the history of the game. For stationary strategies we mtroduce
an apart notation, p for player 1 and o for player 2. Then
= {p(s); s€S} with p(s)eP(A4;) and o = {o(s); s€S} with o(s)eP(B,)
and when player 1 decides to play a stationary strategy p, then each time
the system 1s 1n state s he will choose his pure action according to p(s);

similarly for player 2.

If both players specify a strategy, say =, and m,, then for a fixed starting state
sES,

decision moment n. /il
these probab ities we can derive two things.

this will determa

€ a probability measure on the set of histories h, up to
We will denote these probabilities by P, (s, 7,,7;,h,). From

First, since P, _,(s,m;,7,,.) can be interpreted as some marginal distribu-
tion of P,(s,m,m,.) 1t follows by the Kolmogorov extension theorem,
that the sequence (P,(s,m,7;,.), n = 1,2,...) can be extended to a unique
probability measure on the set of infinite sequences (s1,i1,/1,52,i2,/2,---)-
Second, for each decision moment n, the marginal distribution of triples
(Snsinsjn) OCcurring at decision moment n can be computed.

Let Pgy ., (Snsin,jn) denote the probability that the triple (s,,i,,/,) occurs at
decision moment n if player 1 plays o, player 2 plays 7, and the starting
state 1S s. Then we can compute the expected payoffs at the different deci-
sion moments. Let R(n) be the stochastic variable denoting the payoff at
decision moment n, then
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1o, IR (7)), -, E
and o i1t holds that

F - ER ( n )E = pn— : a (2)

where Pk( p,o) equals th the z X z-matnx P ( p,0) and where
the (s,7)-th element of P(p,0), notation p(¢ls,p,0), equals: p(tls,p,0) :=
S 27 np(tls I,J)Pz(-s' o;(s). Further r(p,0) = (ri(0), rz(p,o) T;(p,0)) with
rs(pao) T 2:"*—-‘"12 *"lrs(la_])Pt(S)aj(S)

[ he inte: retanon is as follows: p(¢ls,p,0) being the (s,7)-th element of
P(p,o ), equals the probability that the system moves in one step to state €S
if In state s S player 1 plays p(s) and player 2 plays o(s). It can easily be
shown by induction, that the (s,#)-th element of P” ~!(p,0) equals the probabil-
ity that at decision moment n the system is in state ¢ if it starts at decision
moment 1 in state s and if the players play the stationary strategies p and o.

Obwviously r(p,0) 1s the expected immediate reward in state s when player 1
plays p(s) and player 2 plays o(s).

Now expression (2) is immediate. Observe that expression (2) specifies simul-
taneously the expected payoﬂ‘ at stage n for all z specific plays with starting
state respectwely 1,2,..

ummarizing the above we see that, associated with a pair of strategies
(m,'zrz) and a specific starting state s, there is a sequence of expected payoffs
(Esam[R(n)]l, n = 1,2,...). In order to compare the worth of strategies, an

evaluation criterion is needed, i.e. a rule which uniquely associates a real
number to such a sequence. In this paper we consider three evaluation rules.
® First, the discounted reward criterion, defined as

vB(s,m,m) i = (1—B) S B"'E,, . [R(n)] 3)

n=1

Here Be(0,1) is the discount factor, reflecting the interest rate. The factor
1 —pB is only meant for normalization purposes.
Second, the average reward criterion, defined as

v(s,m,m) := liminf— Z Esp a0 IR (n)]. (4)

Noow N n =1
Since the limit of the right-hand side of (4) does not need to exist, a
further specification is necessary. The choice of lim inf (‘the worst case’) is

more or less arbitrary. However the results for average reward Stochastic

Games do not change when hm Inf 1s replaced by lim sup or any convex
combination of them.

Third, the total reward criterion, defined as
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2;02—“ lEsvrmz[ {”H
I he expre ssmns (3)

- L] s D ayo S to p layer 1. y
are the negauves of these €X] mssmns.
A Th ojes which

D ble. Si the p f Oor an y Cri-
ffs to . 1 ( i d as minus the payofls to
cept Eeads to the following. I (s, .,- and for any cri-

o hich o him a payoff as

An aBo gously, player 2 tries to find a
ed I as close as possible to

player 2), th is
close as possible to sup, inf,

strategy which guarantees

—— 3 1 Sup C (S . WE 5 Wz), (6)

7, W, W,

we say that the game is strictly determined for starting state s. In that case, the
number c¢(s) 1s call

led the value of the game for starting state s. A Stochastic
Game i1s said to have a value if for each starting state the game is strictly
determined. A strategy which guarantees a player the value of the game up to

e, €0, 1s called e-optimal, so for player 1, 7| is e-optimal if

Infc (s, 7y,m)=c(s)—e (7)

and 73 is e-optimal for player 2 if
sup ¢ (s, m,75)<c(s)+e (8)

A 0O-optimal strategy 1s called optimal.

We conclude this section by a remark on Stochastic Games with a finite
number of decision moments. For all three evaluation criteria these games can
be reformulated (and therefore handled) as a matrix game. Observe that for a
game with finite horizon both players have a finite number of pure strateges.
When we display the Stochastic Game for a fixed starting state as a game 1n
extensive form, then these sets of pure strategies for the players coincide with
the set of pure strategies for the players in the extensive form game. By the
results of Kuhn [19], it follows that these games can be regarded as matrix
games, merely by numbering the pure strategies (being the sets of pure actions
in the corresponding matrix game) and by relating to each pair of pure stra-
tegies the expected payoff as assigned by the evaluation rule to the finite
stream of expected payoffs of these strategies. Hence (Von Neumann [35]) the
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' mixtures of pure strate 3 es.

me with the p mpemy q (s i,]) : E-- Ef —1p(t1s,i,] ) >0 for each s,i an
q (S i,j) equals the SEOP pIng p ity 1n state s when the players select action
i and j respectively. A - iscounted reward Stochastic Game can be formulated
as a total reward stopping Stochastic Game by adaptin ng the tran snmn proba--
bihities. Take for the stopping game E— B as th
Bp(tls,i,j) as the probabil ty of moving from s to ¢ for actions i an
be verified that for each pair of strategaes the total reward in this stopping
game equals the discounted reward in the original game.
We now state the main theorem, due to Shapley [26], of discounted reward
Stochastic Games. For that purpose, define for v = (v1,v,,...,v,) €R?, for each

s €S, the matrix game

ME() 1= [(1—B)ry(i, )+ B 3 p (15,0l . ©)

r =1

denot_c the minmax value of

Further Val(M?(v)) wi this matrix game.
THEOREM 3.1.
(a) Discounted reward Stochastic Games are strictly determined.

(b) The value, say vF := (v§V5,...,v?) equals the unique solutzon to the follow-
ing set of functional equations:

= Val(M#(v)), for each s€S (10)

(c) A stationary strategy, p, for player 1 is optimal if and only if, for each

s€A(s), ps; is an optimal action for player 1 in MP(vP). A similar result
holds for player 2.

The proof of this theorem is based on the fact that the right-hand side of (9)
represents a contraction mapping with contraction factor 8 on the R?. Hence
Banach’s contraction mapping theorem yields a unique solution (fixed point)
to the set of equations (10), which turns out to be the value of the game. An
alternative proof of Theorem 3.1 is given in Vrieze [37]. There the set of equa-
tions (10) 1s formulated as a non-linear programming problem (linear object
function subject to quadrahc constraints). Application of the Kuhn-Tucker
conditions to this NLPP gives a constructive proof of all parts of Theorem 3.1.
In an essential way Theorem 3.1 makes use of matrix game theory. Indeed
several structural properties of discounted reward Stochastic Games can be
found by suitable injection of matrix game properties. For instance, by (c) of
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T ptimal sz‘wnmy strategies O
in the dzsco unted Strochastic G ame is equa

0} (s) is the convex polyhedron of optima

E

[ hen zhere exists a stochastic subgame from which p* and ¢" can be con

puted in the Shapley-Snow manner. (Here a subgame arises when pure actions are
deleted from one or sevemi states for one or both players).

stanonm strate gaes of 08 X 0§ by look - g at the

umber of stochastic subgames in which at each state both players have

umber of pure actions.

that lends itself to conveying properties of matri

ames, 1S perturbation th the first place, from Theorem 3.1,

the fact that the value of a matrnix game is a continuous function
trix game, 1t follows that (Tys and Vrieze [32]):

g Aalfnies to

[HEOREM 3.4. The value of discounted reward Stochastic Games, considered as a
function on the parameters (rewards, transitions, discount factor) is a continuous
one.

Also with respect to the sets of e-optimal stationary strategies (¢=0) a con-
tinuity statement can be made (T1js and Vrnieze [32]):

| HEOREM 3.5. Let 05 (¢) be the set of e-optimal stationary strategy to player K,
ke{1,2). Then O%(€) is an upper semi-continuous multimap on the parameters of
the Stochastic Game.

A useful implication of Theorem 3.5 is the following observation. Take €>0.
[hen for any two games S and S which are ‘close enough’ to each other it
holds that AGIA 0 (€%~ . Moreover it can be shown that 08 (e) C
O «(e+c8), where ¢ is some number determined by the parameters of S and 6
is the distance between S and S.

In practical situations small deviations in the exact values of the game
parameters are inevitable. Theorems 3.4 and 3.5 show that small changes in the
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ame. Furthermore, since USG is open,
Game 1s one belonging to USG.

1 2

(This game has two basic matrix g
has one action (one row) wh

AINCS, 1 and 2. F Or matnx . e E player 1
le player 2 has two actions (two column s) A box
neans: payoﬂ‘ r and a trar smon to state 7 with probabil ty 1. State 2 is
y one action ava able; further-
this state is ab sorbing, since once being there, the game will stay in state
2 for ever)
If player 2 plays
reward
for start

(ne muxed action (1—e,€) in state 1, then the avera ge
equals O as long as €>0, whil the average reward equals 1
10 g state 1.
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ansient states). B

| irreducible Stochastic
m‘kov decision Eh eory.

es with absorbin
_ all bsorbing and where the remain
mg state 1S transient or recurrent, depen ding on t he strategxes played. The bi
_ ame and lettmg by tend

ed that Kohlberg’s ap proach indicated the way in
al case Ehe existence of the value can be shown. Bewley and
{2 3] demonstrated in ai eleg nt way some of the relationships
between the dlscoum ed g ame, me and the average reward game.

Below we shall ain tl al Puiseux series.

Stationary strategncs are the best man ageable type of strategies.
it 1s natural to characterize the class of games for which both players possess
(e)-optimal stationary strategies. A characterization of Stochastic Games with
optimal stationary strategies for both players was given in Vrieze [37]. Further,
in Tijs and Vrieze [33] it was shown that for both players there are always
states which are easy to them, i.e. when the game starts in such a state then the
respective player can guarantee the value of the game by playing an appropri-
ate stationary strategy.

In Filar et al. [13] another interesting question is settled, namely they give
an algorithm which yields the (e€)-best stationary strategies among the station-
ary strategies with respect to the average reward criterion, even in the case
when there are no (e)-optimal stationary strategies.

Some of the above mentioned results will be worked out now. We start with
the introduction of Puiseux series. Let for a positive integer M:
Fy = {Z=gc(k)(1— B'M-  c(k)eR and such that the sernes
SP_oc(k)(1—BY’M converges for all B sufficiently close to 1}. TI

members of F), are power series 1n (1—B)VM Let F := LJ 5 FM, then 1t
can be checked that F is an ordered field and F is called the ﬁeld of real
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ion. That for xeF? th
Notice that (11) is a set of eq
R, (11) 1s eq

cs(kY1—=B)'M s = 1,2,..,z

Zkiocs(k)(l —B)'M s = 12, ...z is the value of the B-discounted reward

Stochastic Game for all B sufficiently close to 1.

(C) Cs (0) = lm B—1 2? =0Cs (k )(1 T B)k/M = I Ly 50072 B lF Vs (n ) Here F Vs (n) IS
the total reward value of the finite horizon Stochastic Game with n decision
moments and starting state s.

(d) If player I has, for each s€S, a real action p(s) such that p(s) guarantees

player 1 Val(MP(x*))+ 0 (1— B) in the matrix game MPE(x*), then p =

(P1,P2,---,p;) Iis an optimal stationary strategy in the average reward game.
An analogous statement holds for player 2.

m terms of discoun ted reward Stochastic Gam CS,
I heorem 4.1 states that limg ;v £ exists for each s €S and that thi
the imit of the average reward values for finite horizon gam

nfinite horizon g4
immediately that stationary strategies which are uniforml
timal are also avera ge reward optimal. (A strate gy 1S uni

timal 1f 1t is optimal for each discount factor B close enough

| HEOREM 4.2.

(a) Average reward Stochastic Games have a value.

(b) e-optimal strategies can be constructed from the solutions to the limit discount
equation by computing for each stage a discount factor with the aid of rules

depending on the history of the game up to that stage. Next the action at that

stage with that history can be chosen as an optimal action in Shapley’s equa-
tion for the computed discount factor.
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Valy xp( 2, p(tls,.,.)8,), each s €S (12)
I

2P (115,5-)v,(1)), each s &S ()

for player f fmd player 2 respectiv eiy,, fw
D the payoff equals f (c,d); A; and B, have the usual m
s(k) k = 1,2 are the sets of extreme optimal aczw s for player k i

game (12).)

t : eir good s Eat es the avera ge mw
ECE P — (php2a 3pz) UC!

ptimal stationary strate gy f or p
eady saw th PR,

m (14).
wonder 1if for certain wls g states one or both players can guaran hem
selves th arting state with the aid of stationary strategies. h}
T1s and Vrnieze [33] it is shown that both players in every game, have at least
one state for which th th . It 1s still an open problem to characterize
for a player his whole set of such ‘easy’ states.
We finish this section with some remarks on games for which the value does
not depend on the initial state. Bewley and Kohlberg [3] already showed that
for games for which limg ,, v8 is the same for each s €S, the value of the game
exists and that both players possess optimal Markov strategies. The followin
theorem can be found in Vrieze [37].

d not exist. One can
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(a) For an average reward Stochastic Game the value is independent of the ini-
tial state if and only if, for some number g eR, Jor each €=>0, the Sfollowi ng
set of equations has a solution for v(e€) = (v(€),v(¢€),...,v,(€)):

Valy wg, (o )+ S p(tls, wi©)l <e, (15}
1

=

'vs(€)+g o

Jor each s €S.
b) Both players have optimal stationary strategies in an average reward Sto-
chastic Game with value independent of the initial state if and only if equa-
tion (15) has a solution for € =

0 i.e. if and only if

Z

Vst g =V al , X B, (rs(-,-)t

[ =

pls,.,.)v,) (16)
|

and veR*“.

for some g €R

In part (a) as well as in part (b) of Theorem 4.4 the value of the game is g for
each starting state. In part (a) e-optimal stationary strategies can be con-
structed by taking optimal actions in the matrix games in (15). In part (b)
opuumal stationary strategies result by takin timal actions in the matrix

games 1n (16).

5. TOTAL REWARD

In Section 3 we alr

Stochastic Games under the restriction of stopping transitions. In this section

we apply the total reward criterion to Stochastic Games as defined in Section
the fact that

this can be seen as a sensitive criterion in addition to the average reward cri-

terion. For instance, consider the following examples:

game 1 game 2

For game 1, obviously the average reward value is (0,0,0). However player 1
would prefer to start in state 1 (getting total reward 1) and player 2 would
prefer to start in state 2 (paying total reward — 1). Likewise in game 2 the
average reward value is (0,0) but player 1 likes to start in state 1, thus owning
half of the time one unit and half of the time zero units. And player 2 likes to

start in state 2, being due half of the time minus one unit and half of the time
O units.

For both games the average reward criterion does not discriminate between
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1 2 3

that for state 1:

the big match of Blackwell an Ferguson [6]. A

It can be proved that in case one of the players has no 0pt nal stationary
strategy for an average reward Stochastic Game, th ne has no total
reward value. Th llowing property.

Pl. The Stochastic Game has average reward value (0,0,...,0) and both

players possess optimal stationary strategies with respect to the average reward
criterion.

[his class of games is introduced in Thuijsman and Vrieze [31]. It is still an
open question whether for this class of games the total reward value always
exists. It can easily be shown that property Pl implies that both
sup, inf, v T(s,ary,m) and sup,, inf, v I'(s,my,m,) are finite.

[he followmg example, called the bad match, elaborated in Thuijsman and
Vrieze [31] shows that, in analyzing total reward games, similar problems as
for average reward games are encountered.
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mi-)Markov stra-

ame lines as average reward . .
implemented to total reward Stochastic Games, which 1s
the fact that even under P op eﬂy Pl streams of payo [Is m
1 the p artial sums are not uniform] Yy bounded.
rming the characterization of games with both players possessing total
timal stationary strategies, the following result can be mentioned
nd Thuijsman [38]):

1HEOREM 35.1. For a total reward Stochastic Game the value exists and both
players have optimal stationary strategies if and only if the following set of func-
tional equations have a solution: (variables: u = (uy,u,,...,u,), w(l) = (w(1),
wa(l),..,w(1),w(2) = (w,(2), w,(2),...,w,(2)) and a=0)

u, = Valy xp(r;(.,.)+ D p(tls,.,. ) )u,), for each s€S (17)

r=1

we(1)+uy = Valg s (@r()+ S p(tls,.. wi(1),

t =1

for each s€S (18)

we(2)+u, = Valy xg@oy(ar(,)+ Jp(ls,.,. )w,(2)),

r =1

Jor each s €S (19)

(Here Valcx p(f (...)) has the same meaning as in Theorem 4.3.)

Observe the similarity of this theorem with Theorem 4.3. Analogously to the
average reward case, the u part of any solution to (17) — (19) is the same,
being the total reward value. Also here optimal stationary strategies can be
constructed from optimal actions in the polyhedral games (18) and (19). Notice
further that equation (17) is equivalent to Property P1 (cf. part (b) of Theorem
4.4). In case both players have total reward optimal stationary strategies it can
be deduced from the limit discount equation that the total reward value equals
c(M) = (ci(M),co(M),...,c,(M)), i.e. the coefficient of the factor (1—p) in the
Puiseux series solution to the limit discount equation. In this case ¢ (M) is also
the leading term since wunder property Pl it holds that c¢(0) =
c(l) = .. =c(M—1) = 0. In terms of the discount factor this property can

162



(yames have been s Stu died.
re chsses of Stoc] asuc -

d as the data of the game.

15/16,1/16)

has, for 8 = 4/5, discounted reward value (\/-8-, 0).

Stochastic games, for which the value and some pair of optimal stationary
strategies, lie in the same ordered field as the data of the game, are said to
have the orderfield property. For a game with the orderfield property one can
expect to find a solution in a finite number of computation steps, resulting in
an exact solution of the game. This observation gives further support to paying
attention to structured games

Successively we will mention the classes studied so far and give in short
some characteristics. We do not state properties with respect to the total
reward criterion, since this criterion has only recently been proposed in the
literature. However, most of the properties concerning the average reward cri-
terion will also hold for the total reward criterion, when, in addition to the
structure on the rewards and transitions, Property P1 (cf. Section 5) 1s assumed
to hold.

(a) One player controls transition.
In this class, only one of the players controls the transitions. Say player 2,

then translation of such a property to the data gives: p(rls,i,,j) =
p(tls,i,,j) for each i),i;€A;, each jeB; and each s,z€S. Hence we can
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(b)

(c)

(d)

10T E36L and in
E, a constru Cti V€& D TOO f, LIS A | A1l ) | |

ling inspector model.
Transitions with switchin £ con trol.

For this class of games in each state only one of the players governs the
transitions. However, unlike the ‘one p layer controls transition’ case, not
in every state does this have to be the same player . This class of £ames
was introduced by Filar [10]. For both the discounted and the average
reward case he proved the orderfield property. A constructive proof for
the discounted version can be found in Vrnieze [37] and for the average
version in Vrieze et al. [42]. In both cases the solution procedure consists
of an 1terative procedure of finite length, where at each iteration a suitable
LP problem has to be solved.

Separable reward and state independent transitions games are defined by
the following structure: ry(i,j) = ri(s)+ry(,j) and p(tlsy,i,j) =
p(tlsay,i4,j) for each 5,,5,€S. Hence we may write p(¢|i,j). As a conse-
quence of the structure imposed the action sets of the players are the same
for each state. These games are introduced in Parthasarathy et al. [23].
lhey showed that SER-SIT games have the orderfield property and that
this class can be solved by solving a matrix game.

For the discounted version this matrix game is

(2, )) =B S p (¢ i, yr (OI7=1 1.

=1

For the average version this matrix game is the limit of the B-discounted
one’s for B tending to one:

[r2(i.)— 2P @i, Pr2O) =17 =1.
t=1
For both criteria both players have optimal myopic stationary strategies.
Myopic means that the stationary strategy is even independent of the
current state. A further result is that for the average case the value is
independent of the initial state. SER-SIT games are also partially studied
by Sobel [29].
ARAT games.
Additive reward and additive transition games are introduced by Ragha-
van et al. [24]. ARAT games are defined by r(i,j) = ris(i)+ro(j) and
p(tls,ij) = P1(ls,i)+p,(2ls,j). Hence both the rewards and the transi-
tions are additive with respect to both players. They proved the following
results. For both the discounted and the average reward criterion both
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m Shapley’s equtions (10). -
d into a term d epending on i an

One player controls rewards for a game with This class of
mes 1S introduced b y Vrieze et al. [41]. It is d riction to two

states and r(i,j) = ry(i), i.e. the rewards only depend on the action of
player 1. Also for this class of games the orderfield property turns out to
hold for the discounted case. For the avera ge reward criterion this 1s an
open question.
We conclude this section with the remark that the time has come to character-
ize the subclass of games having the orderfield property. Two approaches look
promising for the discounted reward criterion at least. One is established in
the paper by Vrieze et al. [41]. To each set of stationary pure strategies of a
player they add a set of stationary strategies of the other player in the follow-
ing way:

Let O be a set of stationary pure strategies for, say, player 1 and let $(Q)
be the stationary strategies of player 2 added to O, then €S (Q) if and only 1if
for each pe 0,0 1s a best answer to p.

Vrieze et al. [41] showed that, in their case, S (Q) is either void or a union of
a finite number of disjoint polytopes with rational extremes (when the data is
rational). In general this quality is sufficient for proving the orderfield pro-
perty. And as such this idea can be used for characterizing the orderfield pro-
perty in more generally settings.

A second approach can be found in Sinha [28]. He combined SER-SIT
games and switching control games. For the discounted case he exploited a
value iteration method based on Shapley’s equations. In each step three con-
nected LP problems have to be solved. In a finite number of steps the solution
of the discounted reward game corresponds to an extreme point of a suitably
chosen system of linear inequalities. In each iteration step this system returns
together with some base (in LP terminology) to this system. Since each of these
iterations approaches the value more closely and since there are a finite
number of different bases, Sinha was able to prove that this procedure stops
after a finite number of steps. There are indications that this method can be
extended to a method that can be used in proving generally whether some sub-
class has the orderfield property (in the discounted case) or not.

(e)

7. ALGORITHMS FOR STOCHASTIC GAMES
In this final section we give a short review on algorithms for discounted and

average reward Stochastic Games. The question 1s always, how to compute the
value of the game together with a pair of stationary strategies (when existing).
For solution methods for special subclasses we refer to Section 6.
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i 1 E d ( E 0)):

value orented nemnon It uns as foﬂows
1. choose vy (v o(1),vo(2),...,vo(2)) arbitranly,
2. let, for r = 0,1,2,...,0" = (a"'(l),o"'(Z),...,o"'(z)) be such that o"(s) 1s an

optimal action for playcr 2 in MB(v)),
3. solve for player ] the Markov decision problem which results when player
fixes o’ and Eet v,+; be the optimal value for this Markov decision

problem repeat from 2.

hi rithm we will mention, is an extension of the Brown-Robinson
scheme for matrix games to Stochastic Games (Vrieze and Tijs [40]). First they
owed that the scheme can be applied to a converging sequence of matrix
games. Next the contraction property of Shapley’s value operator enables them
to prove the convergence of the Brown-Robinson scheme when applied to
discounted Stochastic Games.
[he convergence rate is low (the same as in the case of matrix games), how-
ever at each iteration only simple calculations have to be done.

More about algorithms, especially viewed in a mathematical programmui

context (cf. also Vnieze [37]), can be found in Schultz [25].
Several facts about convergence rates for successive approximation schemes

and value onented policy iteration schemes can be found in Van der Wal [34].

7.2. Algorithms for average reward Stochastic Games
For average reward Stochastic Games there are still many open problems. The
existing algorithms only solve special classes. Surely, by the result of Bewley
and Kohlberg [2] (cf. Section 4), the average value, g, can be approached by
computing the discounted value, v#, and letting Btendto 1 (g = hmﬁ_,lvﬁ ).
However there are no clear rules available for estimating the convergence
rate. A further difficulty is that the players need not possess optimal stationary
strategies.
We mention two algorithms.
The first one is the application of the Hoffman and Karp scheme to the class
of irreducible Stochastic Games, i.e. games for which for each pair of station-
ary pure strategies the corresponding stochastic matrix (cf. (2)) has a single
ergodic class and no transient states. They showed that their scheme converges

to a solution of the following set of equations (in geR and v =
(vls z)ERZ)

g tvy = Valy xp (ri(,.)+ D p(tls,.,.)v,), for each seS. (20)

=1
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jonary strate gls and (2a) the
initial states or (2b) the stochastic game 1

1dea. 1S Eo Cl oose a Ssu wbﬁc sequence of d sco unt factors tending m E
ried out, r esultin g m a scheme w L CONVEIEZES to a solution of

" l uau ons (20). Related algornithms for the same classes can be found

the set of

Since playin arily is preferable to pla
able to have an algorithm vyielding sup,in
inf,sup, v (7, ,0) for player 2.

Observe that these quantities are the bounds for the respective players of the
average rewards that can be reached by playing stationa: Only in the case
both players possess e-optimal stationary strategies are these bounds the same,
equalling the average value of the game. Recently, in Filar et al. [13] a
mathematical programming formulation is given yielding a solution to this
problem (variables le(v},...,v;), vzr(v%,...,vf), Tk x(u},....,u;), ut=
(ul’ 2) p:(pl:'“:pz) and 0:(01,...,0z))

Ing non-stationarily it is desir-
- V(p,m) for player 1 and

subject to:

(a) v_,l, = max,.4 {2;=1p@|s,i, os)v}}

(b) vl +ul= max;c4 {rs(, os)+2f:1p(t|s,i,os)u}}
(€) V.?-; maxX;ep {27 ““IP(tIS»pwj)vtz}

(d) v?+u§2 max; -jeB, {rs(psaj)+2 mlp(tlsspsaj)utz}
All inequalities should hold for each s €S.
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